

Instruction Manual For Automotive Batteries

■ Battery Main Failure Mode

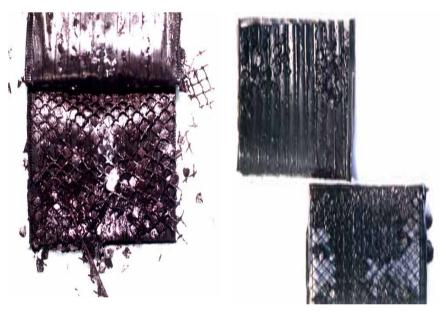
Failure Type	Battery Part	Factor of Failure	Appearance	Check Method
Over Charge	Battery all cell	1)Alternator charge voltage high 2)Handlingnegligence (recharging error)	1)Electrolyte Overflow 2)Indicater color:RED - Exhaustion of electrolyte - Etc	1)Indicater color : RED 2)Electrolyte Color : Black,etc
Over Discharge	Battery all cell	1)Electric part trouble 2)User discharge(light) 3)Generater, fan belt 4)Long period stop	1)No Starting 2)Electric equipment ability weak	1)All cell specific gravity : 1.220/25 ℃ ↓ 2)OCV 12.30V ↓ 3)Generater vs battery voltage difference : 0.2-0.3V ↑
Short	Special cell	Short	1)No Starting 2) Ability loss of electric equipment	1)Specific gravity: low above 0.05 than different cell 2)When discharge, gassing is not in the special cell 3)When charging, gassing is not and S.G is changed in the special cell
Electrolyte leakage	Sealing part case, etc	1)Heat sealing failure 2)Damage	Electrolyte leakage	
Explosion	Exhaust hole	1)Handing negligence - Flammable - Pole short	Battery explosion	

■ Overcharge factor & appearance

1. Overcharge

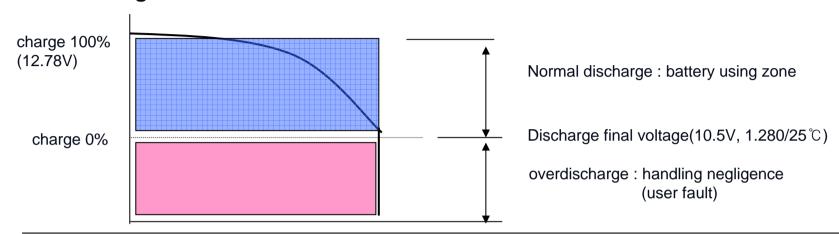
After the discharge, batteries have to certainly recharge. But, When the battery is overcharged ,It is degenerated and then battery capacity grow less and less. Finally, battery life is finished early on. Accordingly, After using battery, It have to be charged carefully.

2. A primary factor of Overcharge


Subject	Detail contents				
	1) bad charge voltage control → charge current rise				
A defect of	— badness of regulater voltage				
automobile's	:have to control about temperature change				
electric part	(temperature $\uparrow ightarrow$ charge voltage \downarrow)				
Regulator (AC Alternator,etc)	2) Regulator badness - increase of charge quantity				
(* 18 7 118 1118 119 118 119	3)Contact badness of AC Alternator & Regulator connector				
long continuance time of	The inside temperature of a bonnet(vehicle) ↑ → charge efficiency ↑				
Idle condition	(long continuance time of Idle condition under high temperature)				
rochargo	In the case of battery recharge				
recharge	high charge current or excessive charge quantity				
	Under the reduced inner capacity, In use, battery can be change to overcharge even in				
partial discharged battery	regularity charge current				
	(electric efficiency of plate \downarrow \rightarrow charge efficiency \downarrow : capacity \downarrow)				

3. An appearance of overcharge

[Casting paltes]


[Expanded plate]

- 1. Positve plate color change : Light brown \rightarrow Dark Brown
- 2. High density of electrolyte
- 3. Exhaustion of electrolyte.
- 4. Active material sticking of indicater
- 5. Shedding of Positive plate active material. : Coherence reduction of active material.
- 5. Separater damage. : crack.

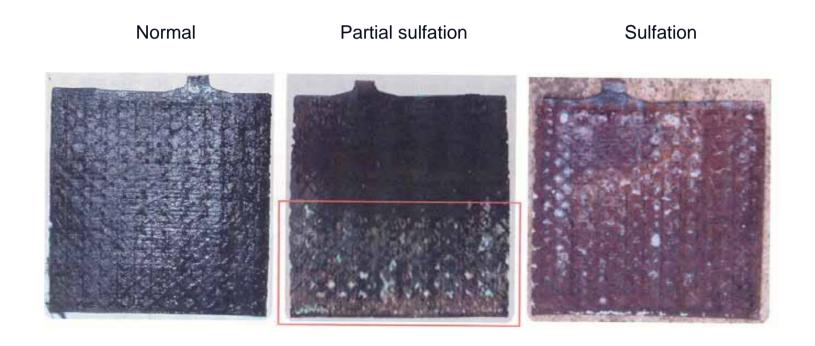
■ Overdischarge factor & appearance

1. Overdischarge

-	Normal discharge	Overdischarge
Application Zone	When the battery is used in above final discharge voltage(10.5V)	When the battery is used till below final discharge voltage(10.5V)
Zone	(blue zond of the Picture 1.)	(the red zond of the Picture 1.)
Special Feature	Discharge curve descend down slowly	Discharge curve descend down quickly
Recovery property	In the case battery is recharged, battery is recovered normally.	In the case battery is recharged, battery is not recovered. (gradually life is decreased)

- When normal discharge of blue zone is repeated continually, battery is changed to overdischarge of red zone
- Normal discharge can recover battery capacity and overdischarge can not recover battery capacity

2. A primary factor of Overdischarge


-	Discharge factor	Detail		
	Low current discharge (Radio,etc)	Charge efficiently of the battery is dropped greatly by the deep discharge → reduction of charge recovery property		
	A defect of the electric Circuit	Leak current is increase Genelater trouble		
Vehicle	Vehicle charging system trouble	 Regulator setting voltage 14.4V ↓ Belt tention trouble, Disconnection or ubstable connection) 		
	Long keeping period	Long keeping period before battery is delivered to customer		
	Loose battery connection	Contact resistance increase		
	Running stop of long period	Leaving alone long period after running vehicle :discharge rate increase in the summer period (high temperature)		
Customer	Load use after parking (Idle condition)	Using of the excess load after parking (Idle condition) : an air conditioner, TV, AV system		
Oddiomei	Attachment electric equipment	Many attachment electric equipment(TV, charging, etc)		
	Insufficiently charging	Forget fulness after using load ; leaving alone turnning on load(radio, a headlight, door open,etc)		
Etc.	Impurities	* Inflowed Impurities into electrolyte: discharge rate crease		

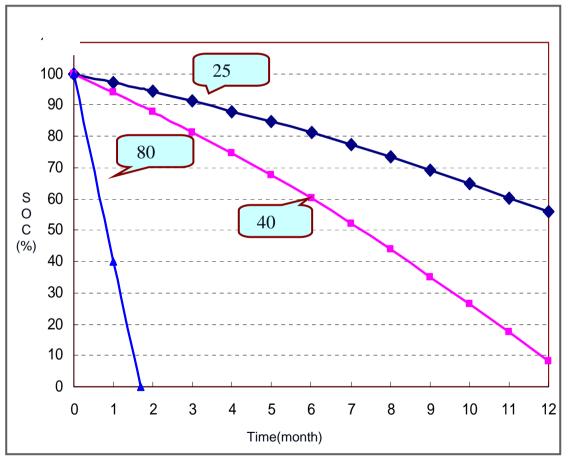
3. An appearance of discharge

- 1) Sulfation of plates(Sulfation)
 - ① plate color : light brown → light red
 - ② hardening of the plate & deficiency of grid softness → vertical or horizontal cutting state
 - 3 active material shedding
 - ④ shrinkage of the plate → bending of the plate
- 2) A change of color in separater: white cristal or color
- 3) Decrease of the specific gravity in the electrolye : gradually corrosition from the upper part of the plate
 - → especially, leaving alone long time in discharge state (final voltage or low gravitity)

*** Plate Condition**

Overdischarge Facter

Self Discharge

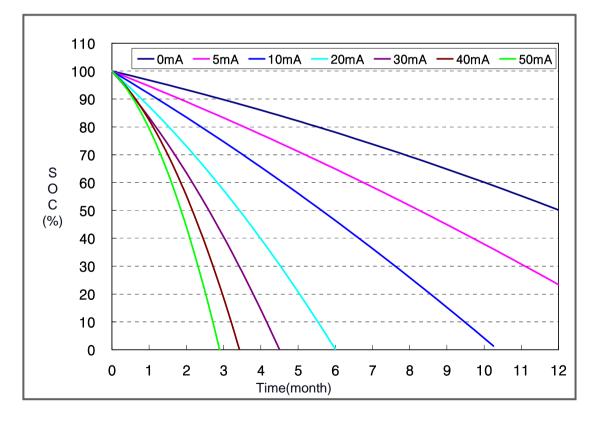

- Self-discharge is a kind of loss of capacity on open circuit state with no load.
- It is occurred naturally.

Usually it is caused by chemical reason.

- Main reasons
- Temperature : temperature (atmosphere and battery) , self-discharge
 Self-discharge is slowly increasing until 25 , rapidly accelerated above 25 .
 Generally, high temperature is the main factor increasing self-discharge.
- 2) State of battery: self-discharge reaction is more active just after charging.
- 3) Concentration of electrolyte; Self-discharge is increasing at too low (S.G 1.250) or too high (S.G 1.300) concentration.
- 4) Influence of impurities: iron(Fe) accelerate self discharge in the electrolyte

▶ The Self Discharge characteristics for temperature

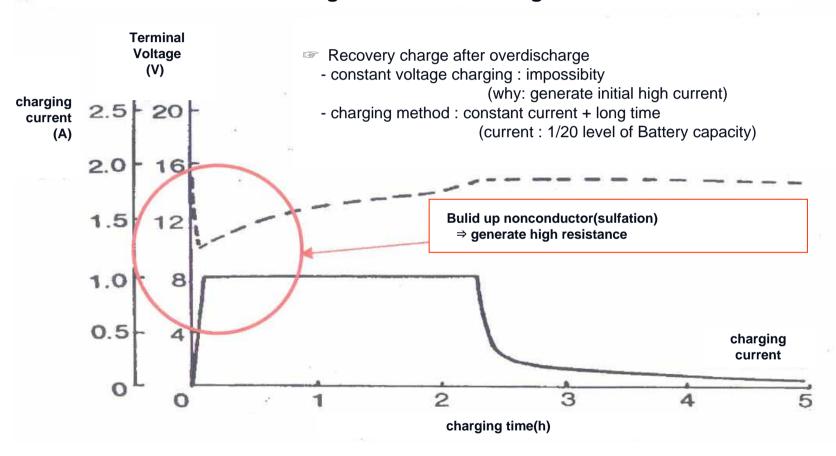
Temp.	25	40	80		
Self Discharge(%)	about 0.12%/day	about 0.25%/day	about 2.0%/day		

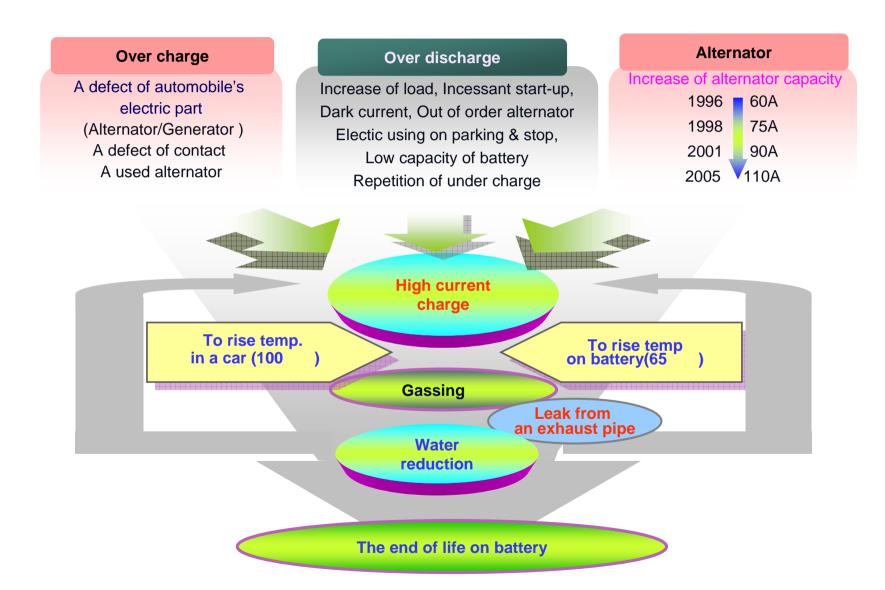


Voltage	S.G	SOC(%)
12.84	1.290	100
12.72	1.270	90
12.60	1.250	80
12.48	1.230	70
12.36	1.210	60
12.24	1.190	50
12.12	1.170	40
12.00	1.150	30
11.88	1.130	20
11.76	1.110	10
11.64	1.090	0

► Leak current discharge (vehicle]

Tem	n	25
1 6111	ρ.	~


	-	0mA	5mA	10mA	20mA	30mA	40mA	50mA
	80%	22week	14week	9week	6week	5week	4week	3week
	60%	40week	27week	18week	11week	9week	7week	6week
SOC (%)	40%	56week	39week	26week	16week	12week	10week	8week
(70)	20%	69week	50week	34week	20week	15week	12week	10week
	0%	82week	60week	40week	23week	17week	13week	11week


S.G	SOC(%)
1.290	100
1.270	90
1.250	80
1.230	70
1.210	60
1.190	50
1.170	40
1.150	30
1.130	20
1.110	10
1.090	0
	1.290 1.270 1.250 1.230 1.210 1.190 1.170 1.150 1.130 1.110

■ Recovery charge after overdischarge.

The characteristics for charge after overdischarge

■ The end of life Mechanism by high temp & current charge

■ The characteristics for charging method

-	Contents	Reference
Constant Current Charge	 ▶ Charge of using constant current ① Predetermined Current : 1/8 or 1/16 level of Battery capacity(5HR) ② The Voltage Rising Point : The voltage is rapidly rising from coming to 14.4V. The reason is that gassing take wings when charge is almost completed(80%). it remains essentially constant after reach 16.8~17.4V. if battery is charged continually this rate, it will be over-charge and it will be causative of early life's end of battery. ③ The Completion Of Charge : When it is fixed terminal voltage and specific gravity 3 times 	Specific Gravity 16V (25°C) 1.300 14V Voltage 1.200 12V Specific Gravity 1.100 Voltage 1.000 OV Charging time(h)
Constant Voltage Charge	 ▶ Chatge of using constant voltage Predetermined Voltage : 14.4 ~ 16.0V regularit Characteristics of charge : Charging current is decided by a potential difference between battery voltage.	charging current(A) 50

■ Method of auxiliary charge

Charger (Rectifier)

- 1)Charger must be controlled charging ampere or voltage freely.
 - Charging current can be controlled by 0.1A scale.
- 2)When many batteries must be charged, connect between batteries series or parallel circuit by using connector.
 - Notice the connecting condition. Loose contact can occur sparking. Sparking is cause of post damage and battery explosion. Connector must be keeping clean condition.
- 3) charger must be checked current and voltage periodically.
- 4) H2 gas is generated during charging. So the charging place must have good air circulate.

Notice

- 1) Classify according to degree of discharge.
- 2) Low charging current is better, and current must be lower 5 hour rate current
- 3) The temperature of battery must be lower than 45 .

 If temperature increase over 45 , pause charging several(1~2) hours.
- 4) Check the (+),(-) position.
- 5) Don't treat or polish with dry clothes within several hour. Static electricity can lead to explosion. Wear protective device. Keep free from smoking and firing.

6) Calculation of auxiliary charging

charging amount

$$C = C20 \times D \times 1.3$$

C : charging amount (AH) C20 : 20Hr rate capacity

1.3 : 130% (coefficient) D : discharging amount(%)

Charging time

$$T = C \div A$$

T : charging time(Hr) C : charging amount[AH) A : charging current

ex] 56048 : specific gravity 1.210/25 . How to charge ?

Charging amount: $60Ah \times 0.4 \times 1.3 = 31Ah$ (40% discharged; see table 1)

charging current : $0.1 C_{20}$ is OK = 6A

Charging time : $31Ah \div 6A = 5.2Hr$

7) specific gravity must convert temperature effect.

temperature converting equation : S25 = St + 0.0007 (t - 25)

S25 : s.g at 25 St : s.g at t t : electrolyte temperature

s.g of full charged battery: $1.290 \pm 0.01/25$

■ Table 1.: electolyte specific gravity conversion table

-	-15	-10	-5	0	+5	+10	+15	+20	+25	+30	+35	+40	Charing quantity	(V)
11.7%	1.108	1.105	1.101	1.098	1.094	1.090	1.087	1.084	1.080	1.076	1.073	1.069	0%	11.58
13.1%	1.118	1.115	1.111	1.108	1.104	1.100	1.097	1.094	1.090	1.086	1.083	1.079	5%	11.64
14.7%	1.128	1.125	1.121	1.118	1.114	1.110	1.107	1.104	1.100	1.096	1.093	1.089	10%	11.70
16.1%	1.138	1.135	1.131	1.128	1.124	1.120	1.117	1.114	1.110	1.106	1.103	1.099	15%	11.76
17.3%	1.148	1.145	1.141	1.138	1.134	1.130	1.127	1.124	1.120	1.116	1.113	1.109	20%	11.82
18.7%	1.158	1.155	1.151	1.148	1.144	1.140	1.137	1.134	1.130	1.126	1.123	1.119	25%	11.88
20.0%	1.168	1.165	1.161	1.158	1.154	1.150	1.147	1.144	1.140	1.136	1.133	1.129	30%	11.94
21.2%	1.178	1.175	1.171	1.168	1.164	1.160	1.157	1.154	1.150	1.146	1.143	1.139	35%	12.00
22.5%	1.188	1.185	1.181	1.178	1.174	1.170	1.167	1.164	1.160	1.156	1.153	1.149	40%	12.06
23.8%	1.198	1.195	1.191	1.188	1.184	1.180	1.177	1.174	1.170	1.166	1.163	1.159	45%	12.12
25.1%	1.208	1.205	1.201	1.198	1.194	1.190	1.187	1.184	1.180	1.176	1.173	1.169	50%	12.18
26.3%	1.218	1.215	1.211	1.208	1.304	1.200	1.197	1.194	1.190	1.186	1.183	1.179	55%	12.24
27.6%	1.228	1.225	1.221	1.218	1.214	1.210	1.207	1.204	1.200	1.196	1.193	1.189	60%	12.30
28.8%	1.238	1.235	1.231	1.228	1.224	1.220	1.217	1.214	1.210	1.206	1.203	1.199	65%	12.36
30.0%	1.248	1.245	1.241	1.238	1.234	1.230	1.227	1.224	1.220	1.216	1.213	1.209	70%	12.42
31.4%	1.258	1.255	1.251	1.248	1.244	1.240	1.237	1.234	1.230	1.226	1.223	1.219	75%	12.48
32.6%	1.268	1.265	1.261	1.258	1.254	1.250	1.247	1.244	1.240	1.236	1.233	1.229	80%	12.54
33.8%	1.278	1.275	1.271	1.268	1.264	1.260	1.257	1.254	1.250	1.246	1.243	1.239	85%	12.60
35.0%	1.288	1.285	1.281	1.278	1.274	1.270	1.267	1.264	1.260	1.256	1.253	1.249	90%	12.66
36.2%	1.298	1.295	1.291	1.288	1.284	1.280	1.277	1.274	1.270	1.266	1.263	1.259	95%	12.72
37.4%	1.308	1.305	1.301	1.298	1.294	1.290	1.287	1.284	1.280	1.276	1.273	1.269	100%	12.78
38.6%	1.318	1.315	1.311	1.308	1.304	1.300	1.297	1.294	1.290	1.286	1.283	1.279	-	-
39.7%	1.328	1.325	1.321	1.318	1.314	1.310	1.307	1.304	1.300	1.296	1.293	1.289	-	-

■ Table 2. :charging standard classified by discharge state

* Charge standard : In the case of above mininum 24hour After running vehicle

	Battery	voltage/cha	rging state	Auliliary	charging method	Damark
-	voltage	charge	judgement	Remark		
	12.78V↑	100%		 Auxiliary charge 	Auxiliary charge	▶ In the case of vehicle
	12.66V	90%	n a a a i b i lite e	advice	advice	IDLING, All electric
Α	12.54V	80%	possibility		⇒ about 10~30 minite	load have to keep turnning off
	12.42V	70%				
	12.30V	60%		Auxiliary charge	Auxiliary charge	► charge standard
В	12.16V	50%	Auxiliary Charge	(cocontainty)	• • • • • • • • • • • • • • • • • • • •	calculated by winter
	12.06V	40%			⇒ Idling above Thr.	
	11.94V	30%		- voltage : 14.4V	Auxiliary charge	
	11.82V	20%	- current : auto	, , , , , , , , , , , , , , , , , , ,		
С	11.70V	10%	Charge	control	⇒ Idling above 2hr □ In the case of 11.58V,	
	11.58V	0%			charging above about 4hr (recovery : above 90%)	
D	11.57V↓	Full	battery	Impossibility of recove		
D	0V	Dischar	exchange	(excessive sulfation(P	PbSO ₄))	

-	Handling mothod vs battery voltage				Domaile
	12.40V ↑		12.40V ↓		Remark
ALT' current	10A ↓	10A ↑	10A ↓	10A ↑	AIT' current measurement: after 5minute since
Handling mothod	А	В	В	С	starting vehicle 예) Voltage 12,60V,ALT' current 35A →handling 'B"